Search results for "Doped Materials"
showing 8 items of 8 documents
Photoconductivity and photovoltaic effect in indium selenide
1983
Transport and phototransport properties of crystalline indium monoselenide (InSe) doped with a variety of elements are reported. Measured mobilities, lifetimes, and effective diffusion lengths of photoexcited carriers are used to interpret electrical and photovoltaic properties of several different structures. These include p‐n junctions, bismuth/p‐type InSe, platinum/n‐type InSe, and indium tin oxyde (ITO)/p‐type InSe. External solar efficiencies of the best devices are between 5% and 6%. The influence on the efficiency of the various parameters is evaluated, and ways of improvement are discussed.
Enhanced photorefractive properties of Bi-doped Sn2P2S6
2008
International audience; Enhanced photorefractive properties of tin hypothiodiphosphate (Sn2P2S6) crystals as a result of Bi doping are presented. These new crystals were obtained by the vapor-transport technique using stoichiometric Sn2P2S6 composition with an additional amount of Bi up to 0.5 mol. % in the initial compound. The bandgap edges of the obtained crystals are located at ~750 nm and shift toward the red wavelengths with increasing Bi concentration. Sn2P2S6:Bi crystals are found to exhibit larger two-beam coupling gain coefficients (up to 17 cm−1 at a wavelength of 854 nm) as compared to (i) pure Sn2P2S6 (2.5 cm−1 at 854 nm), (ii) Sn2P2S6 crystals modified by the growth conditions…
Optical characterization of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals
2007
International audience; We report a complete optical characterization of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals. We studied the relative orientation between the dielectric and the crystallographic frames as a function of the wavelength and performed accurate phase-matching angles measurements for second harmonic generation, using a single crystal cut as a sphere. We also recorded polarized luminescence spectra of Nd:YCOB along the principal axes of the dielectric frame. For both crystals, we measured the gray-tracking and the thermo-optic properties as a function of temperature and wavelength using oriented slabs. Finally, we measured all their dielectric and electro-optic coefficients, as…
Modulational instability and generation of self-induced transparency solitons in resonant optical fibers
2009
International audience; We consider continuous-wave propagation through a fiber doped with two-level resonant atoms, which is described by a system of nonlinear Schrodinger-Maxwell-Bloch (NLS-MB) equations. We identify the modulational instability (MI) conditions required for the generation of ultrashort pulses, in cases of both anomalous and normal GVD (group-velocity dispersion). It is shown that the self-induced transparency (SIT) induces non-conventional MI sidebands. The main result is a prediction of the existence of both bright and dark SIT solitons in the anomalous and normal GVD regimes.
Modified Donnan phenomena in polyaniline with poly(vinyl sulphonate) chains
1993
We develop a physical model, based on the modified Donnan phenomena ideas introduced previously by the authors, to describe the acid doping of the conducting polymer polyaniline. The theory is motivated by the experimental work of Asturias et al. [Ber. Bunsenges. Phys. Chem. 95, 1381 (1991)]. Good agreement between theory and experiment is found.
Transport properties of nitrogen doped p‐gallium selenide single crystals
1996
Nitrogen doped gallium selenide single crystals are studied through Hall effect and photoluminescence measurements in the temperature ranges from 150 to 700 K and from 30 to 45 K, respectively. The doping effect of nitrogen is established and room temperature resistivities as low as 20 Ω cm are measured. The temperature dependence of the hole concentration can be explained through a single acceptor‐single donor model, the acceptor ionization energy being 210 meV, with a very low compensation rate. The high quality of nitrogen doped GaSe single crystals is confirmed by photoluminescence spectra exhibiting only exciton related peaks. Two phonon scattering mechanisms must be considered in orde…
High‐temperature behavior of impurities and dimensionality of the charge transport in unintentionally and tin‐doped indium selenide
1993
A systematic study of the electron transport and shallow impurity distribution in indium selenide above room temperature or after an annealing process is reported by means of far‐infrared‐absorption and Hall‐effect measurements. Evidences are found for the existence of a large concentration of deep levels (1012–1013 cm−2), related to impurities adsorbed to stacking faults in this material. Above room temperature impurities can migrate from those defect zones and then become shallow in the bulk. The subsequent large increase of 3D electrons can change the dimensionality of the electron transport, which in most cases was 2D. The temperature dependence of the resistivity parallel to the c axis…
Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers
2009
International audience; The feasibility of a microstructured optical fiber (MOF) amplifier, made of a novel Er3+-doped chalcogenide glass, has been demonstrated via accurate simulations performed by employing an oppositely implemented computer code. The optical and geometrical parameters measured on the first MOF sample together with other physical constants from literature have been taken into account in the simulations. The calculated optical gain of the optimized MOF amplifier, 2.79 m long, is close to 23 dB at the signal wavelength of 1.538 μm, by using a pump power of 200 mW and a signal power of 0.1 μW.